HOWTO: Call an Visual Basic ActiveX DLL as a Custom Action

This is basically a four step process. You have to

Step
Description
Corresponding Action

1
Resolve the path to the ActiveX DLL
SetSupportActiveXLocation

2
Register the Active X DLL
RegisterSupportActiveXDLL

3
Use the ActiveX DLL
CustomInstallationActions

4
Unregister the ActiveX DLL
UnRegisterSupportActiveXDLL

[image: image1.png]
You will include the ActiveX DLL that contains the properties or methods that you want to use on your source media. In my case I created a subdirectory under the installation directory called SetupFiles and placed my custom ActiveX DLL here. I did not mark it as self registering because It will only be used for installation. I created the directory and placed the DLL there as I have not yet figured out how to include something on the source media without having it installed (other than manually copying the directory to the media after I build the release. You would have to do this each time as the release directory is destroyed and recreated each time from what I can tell).

So on the source media we have this directory structure.

myapplication\SetupFiles

myActiveX.DLL

You now have to resolve the path to this ActiveX DLL in order to be able to register it. The first step in this is to create a property to hold the fully qualified path to the ActiveX DLL.

[image: image2.png]
I called my property INSTALLATIONSUPPORT.

This is how the sequences will be arranged. Notice where I placed my first sequence (the one to resolve the path AFTER the ResolveSource sequence this is necessary).

[image: image3.png]
Here are the properties for the first sequence. The source is the property, the target uses SOURCDIR and my application directory name on my media along with SetupFiles. In this example my ActiveX DLL was called Vecisupt.dll. Now we can use the INSTALLATIONSUPPORT property to register the ActiveXDLL.

[image: image4.png]
Now we need to register the ActiveX DLL. This uses the msiexec utility to do this. The RegisterSupportActiveXDLL custom action accomplishes this.

[image: image5.png]
Now we can actually use the ActiveXDLL. My custom action CustomInstallactionActions accomplished this.

[image: image6.png]
I actually included my VBScript in the action itself. Here is my script to set a simple property, but you can do pretty much anything here.

Public Sub CheckAllRequirements()

 Dim s

 Set s = CreateObject("VECISUPT.cInstallationSupport")

 Session.Property("DLG_EF_IPADDRESS") = s.IPAddress

 Set s = Nothing

End Sub

CheckAllRequirements

The name of the sub does not matter as it is not tied to the CustomAction name in this case. Notice that I did not have to set an object reference to Session.Property in order to use it. This is global to the script when called. You can get the complete layout of the object model for the Session object from the Windows Installer SDK. It should also be noted that EVERYTHING is pretty much case sensitive. So make sure that the case of Session.Property or the function in your ActiveXDLL are exactly as they should be.

The next thing is to unregister the ActiveX DLL. I do this with my custom action UnRegisterSupportActiveXDLL. Again this uses the msiexec. The only difference between the register and unregister is the /y versus /z option on the call to msiexec.

[image: image7.png]
There are a couple of notes I think I should mention is that you need to be aware of a couple of property settings in a couple of cases. The first is to set the condition of NOT Installed on the sequences. This will insure that the actions get done on install and do not get called on uninstall.

[image: image8.png]
The next is to set the execution method to immediate on all of the custom actions.

[image: image9.png]
Here are the summary screens for each custom action

[image: image10.png]
[image: image11.png]
[image: image12.png]
[image: image13.png]

