Installing Services and Visual Studio
Windows Services have been around for quite a while, and you'd expect that the way to install them would be pretty well-defined by now. However the number of choices is surprising, and, as we'll see later in this article, the arrival of .NET produced two more. What I'll do in this article is describe the way I believe Services should be installed, the issues when you use a Visual Studio Setup & Deployment project to install Services (particularly managed code Services) and then describe a tool that you can use to modify Windows Installer setup files, MSI files, to install Services using the built-in features of Windows Installer.
Going through the ways that Services can be installed in more-or-less chronological order of their appearance in Windows:
1. The CreateService Win32 APIs and related ones like OpenService.
This is the way that Services are installed from the Win32 perspective and is sometimes used internally in setups that are not based on Windows Installer, MSI.

2. The Registry.

This one is for registry geeks, if you'll excuse the expression. The repository for a lot of data related to Windows APIs that store configuration data happens to be the registry. For those who know the registry and want to shortcut the Service APIs, there's the option of just adding the registry entries that describe a Service. Apart from the "should people really do this?" issues, it has the disadvantage of not providing a way to get the Service actually started. This unfortunately means that people who install Services this way sometimes ask for a reboot at the end so that the newly-created Service that's marked for automatic startup will start at the reboot. Needless to say, forcing a reboot for this is rather unfriendly as well as unnecessary.

3. The WMI classes.

When Windows Management Infrastructure came of age, many aspects of the operating system were exposed via WMI classes, and Services are no exception. The Win32_Service class has properties and methods to control, create and delete Services. In this case, Win32_Service is really just a wrapper for CreateService. Perhaps the primary advantage of WMI is that it is scriptable, so an administrator can run VBScripts that control Services or even delete them. If you build setups that install Services and end up with a Service that won't uninstall because your uninstall won't work properly, it is very convenient to be able to delete that Service with a few lines of VBScript.
4. Windows Installer.

When Windows Installer, MSI, came along around 1999, it offered built-in support for installing Services, as you’d expect from a fully-featured installation technology. Part of the operating system, internally it contains the database tables ServiceInstall (to install Services) and ServiceControl (to start/stop/delete Services, not only the ones you're installing but others on the system). The ServiceInstall table is basically the list of parameters that match those used by the CreateService API. The ServiceControl table lets you start your Service automatically when you install it. This MSI-based way of installing Services was adopted by the 3rd party vendors who build supply installation development tools, such as InstallShield, Wise and so on) and is the primary one used over the past 5 or 6 years. To me, this seems the best approach to installing Services. You don't need to write code. The tools offer up choices in their IDEs about what you want to do with the Services, the Service tables in the MSI file are populated, and Windows does the rest.
4. The InstallUtil.exe utility
When .NET arrived, a tool called InstallUtil.exe was introduced together with a set of installer classes in the .NET framework. The ServiceInstaller framework class contains code to install Services, and the developer can override the class methods to provide extra install-time code. This provides a useful way for developers to easily install Services for testing purposes.
5. Using MSI with Installer Class Custom Actions

As an extension to 4, Visual Studio setup projects can call installer classes in much the same way as InstallUtil.exe. Windows Installer (MSI) has a custom action capability, the way that Windows Installer calls external code that a setup author can write. Windows Installer can't call installer class methods directly, so there is a shim Dll called InstallUtilLib.Dll between Windows Installer and the installer class code. This shim Dll exports a standard Windows Installer custom action to which parameters about the Service are passed. This shim Dll locates your assembly, uses .NET reflection to find your installer classes, instantiates them, and then calls the method appropriate to the current activity, such as install or uninstall.. This is rather complicated when compared to just putting some data in the Service tables in the MSI file, and it also has no built-in capability to start the Service once it's installed. It's not unusual to see questions about how to start the Service during the install without doing a reboot. Another common issue is if the installed product goes through a Windows Installer repair, the custom action may get called again, and once again attempts to install the Service and fails, causing the repair to fail. During uninstall it's not uncommon to hear reports that the Service didn't stop. Among the other issues are the difficulties in specifying that your Service is dependent on some other Service that needs to be started before yours, and the fact that there's no support for adding a description of the Service. This is all rather complicated, and you have to wonder why Visual Studio Setup & Deployment projects use InstallItilLib.Dll and framework classes when they could just populate the Service tables in the MSI file.
One of the downstream effects of the appearance of installer classes is that 3rd party tool builders also started offering support to call installer classes, so the issues that people have with installer classes are propagating into other installations too because developers start using installer classes to install .NET Services and the tool builders offer support for them. The information disconnect in here seems to be that .NET developers are encouraged to believe that use of installer classes is the only way to install .NET Services, but .NET Services can in fact be installed in the standard MSI way using the Service tables.
What To Do?
My bias is probably showing by now, but if you're building a product release setup that installs Services, I believe that what you should be doing is using a tool that installs Services using the MSI Service tables. It's not an exaggeration to say that all the 3rd party tools that install Services use these MSI Service tables. But if you are using Visual Studio, what choice do you have? To address this issue I built a tool that processes MSI files to add the Service installation data to the Service tables in an MSI file using Service specifications from an Xml file. MSI files are actually databases, and there is a set of APIs that can be used to modify and update them with SQL-like queries. This means that this tool can be run after your MSI is built, and it will add the ServiceInstall and ServiceControl specifications from an XML file.
Rather than design an XML schema from scratch, I based it on the one used by Wix. Wix is an open source MSI -building tool that is based on XML specifications of a setup, so I used most of their ServiceInstall and ServiceControl Xml specifications. For more information on Wix, look on Sourceforge at http://sourceforge.net/projects/wix/
Note that the tool presented here works on any Service that you want to install, not just .NET Services. If you happen have a Service written in C++ and you want to use a Visual Studio setup project together with this tool to get it installed, that will work fine.

A Tool to Add the Service Entries to an MSI File
The tool I'll describe here is a C# Visual Studio 2005 program that uses the content of an XML file to add entries to the ServiceInstall and ServiceControl tables in your MSI file. I won't go into the details of every line of code just the general methodology. The source code is available for download.
The way you use this tool is to run it as a post-build event somewhere in your Visual Studio solution so it runs after the MSI file has been built. When you build the MSI file you simply add your Service executable to your Setup and Deployment project (typically to the application folder) but you add no installer class custom actions as you probably would normally to install the Service.

This is an example Xml file that contains the specifications for the most common features of installing and controlling a Service:
<ServiceData>

 <FileName>CSService.exe</FileName>

 <ServiceInstall>

 <Id>ServiceInstallColumn</Id>

 <Name>CSService</Name>

 <DisplayName>MyCSService</DisplayName>

 <ServiceType> ownprocess </ServiceType> <!-- or shareprocess-->

 <Interactive> no</Interactive>

 <Start> demand </Start> <!—auto, demand or disabled-->

 <ErrorControl >

 <!—ignore, normal or critical -->

 normal

 </ErrorControl >

 <Dependencies >RpcSs</Dependencies >

 <Description> This is the CS Service Description </Description>

 </ServiceInstall>

 <ServiceControl>

 <Name>CSService</Name>

<!-- install, uninstall or both-->

<Id> MyServiceControl </Id>

 <Start> install </Start>

 <Stop> both </Stop>

 <Remove>uninstall </Remove>

 <Wait> Yes </Wait> <!-- no or yes -->

 </ServiceControl>

</ServiceData>
The ServiceControl and ServiceInstall specifications are contained inside a ServiceData node that contains data common to both install and control of a single Service. This ServiceData node contains only a file name, the executable that is the Service code file. The names of the nodes and their values are not case-sensitive.
Both ServiceInstall and ServiceControl require you to specify an Id, a name you can choose. These values are added to the ServiceInstall and ServiceControl tables in the MSI file and are required to be unique in each of those tables. This just means that if you run the program more than once against a particular MSI file it will work the first time and fail afterwards because those Ids have already been added to the MSI Service tables. So if you want to install more than one Service, use a different Id for each Service.
The ServiceInstall section contains the usual data that you'd pass to the Win32 CreateService API. Name is the internal name of the Service, DisplayName is the visible name as shown in the Services applet. ServiceType will usually be OwnProcess, meaning that the Service is implemented in a single process. Interactive can be Yes or No, specifying whether the Service should be set to Interact with Desktop or not. The Start setting can be Auto, Demand or Disabled, corresponding to whether the Service should be started manually or automatically when the system starts, or if it should be disabled. ErrorControl specifies the behavior of the Service if it faults (choices are Normal, Ignore, Critical) and Dependencies is the optional name of a Service that yours is dependent on. Description is the plain text description of what the Service does. This is an item that isn't in the CreateService API, and people typically create a Service description by writing it to the registry, although the Win32 API ChangeServiceConfig2 is arguably the proper way to add the description. Finally, Id is an identifier that you specify that ends up in the first column of the ServiceControl table in the MSI file.
ServiceControl describes when you want to start, stop and remove the Service. The Name element specifies the internal name of the Service. The Start, Stop, and Remove elements have choices of values Install, Uninstall, or Both. At first these choices probably seem puzzling – what does it mean that you want to stop the Service at both install time and uninstall time? Surely we just start the Service at install time? Looking at the Stop element, the reason for these choices is that internally an installation needs to stop Services both at install and uninstall. For example, in the case of an upgrade installation, you need to stop the Service before you can install its replacement. In the case of an uninstall you need to stop the Service so that it can be uninstalled. You might not actually be doing an upgrade, but the stop at install time is just a no-op if the Service doesn't exist. So the Service will be stopped during an install if it exists to allow the replacement to overwrite it, and it will be stopped at uninstall so that it can be removed. The Start value of Install is more straightforward – this just means that we want to start the Service after it has been installed. The Remove value of Uninstall is required. Unless you specify removal at uninstall time the Service will not be uninstalled, although the executable file will be removed. The Wait element can have values of Yes or No. If you specify Yes, you're telling Windows that you want to wait until the Service has completed the action, so a Start or Stop will wait for the Service to really start or stop. This also has the implicit meaning that you care that the operation succeeds, and if in fact it fails because the Service does not actually start or stop then the current installation operation (install or uninstall) will roll back. If you set the Wait value to No, this means that MSI will send the command to the Service Control Manager (the SCM) but will not wait for the Service to complete the action.

I won't spend any time on the MSI APIs that are used in the code because you can download the code and step through it to see how it works, and because it uses P/Invoke to the standard documented Win32 APIs such as MsiOpenDatabase and MsiViewExecute. I'll talk about the SQL syntax that's used because it'll be useful if you ever need to do something similar to add other data into an MSI file.

An example of the command that adds the data to the ServiceInstall table looks like this:

 Insert into `ServiceInstall` (`ServiceInstall`,`Name`, `DisplayName`, `ServiceType`, `StartType`, `ErrorControl`, `LoadOrderGroup`, `Dependencies`, `StartName`, `Password`, `Arguments`, `Component_`, `Description`) VALUES
('ServiceInstallColumn','CSService' ,'MyCSService' , 16 , 3 , 1 ,'' ,'RpcSs[~][~]' ,'' ,'' ,'' ,'C__16A83E86A4964D779A1EB13307EE98F2' ,'This is the CS Service Description')
This is in two general parts, first the specification of what columns in the ServiceInstall table are being specified, and second, in the VALUES part, the corresponding values going into those columns. Where table and column names are used, they are enclosed in a tilde, the peck mark `. Where values are specified they are enclosed in single quotes except when they have numeric values. The column names are documented in the Windows Installer section of the Platform SDK in the description of the ServiceInstall table and are case-sensitive.
Most of the data from the ServiceInstall Xml can be seen in this table. The item that isn't in the Xml that deserves some explanation is the value C__16A83E86A4964D779A1EB13307EE98F2 that corresponds to the Component_ column of the ServiceInstall table. Internally, the ServiceInstall table requires that its Component_ column contain a component name that is a key into the Component table of the MSI file, and it's this Component table that refers to the actual file name. In other words the ServiceInstall table doesn't directly specify the file name – it specifies an internal component name, and it's this component that indirectly species the file name. Visual Studio generates that component name C__16A83E86A4964D779A1EB13307EE98F2' to arrange this internal linking in the MSI file, and doesn't make it visible anywhere. The way the tool solves this problem is that the Xml specifies the executable name of the Service, so the tool enumerates the entries in the File table in the MSI file until it finds a match for your Service file name, and the File table contains the Component_ value we need.

The ServiceControl table update command also has that Component_ value, and the Start/Stop/Remove values from the Xml are parsed by the tool to create a value (163) that goes into the Event column. In the ServiceControl table, the Event column is actually a combination of values that are OR'ed together.
Insert into `ServiceControl` (`ServiceControl`, `Name`, `Event`, `Arguments`, `Wait`, `Component_`) VALUES('MyServiceControl','CSService' , 163 ,'' , 1 ,'C__16A83E86A4964D779A1EB13307EE98F2')

The fact that there are File and Component tables, as well as ServiceInstall and ServiceControl tables should be reinforcing the idea that an MSI file is a database of tables that describe how the install (and uninstall) behaves. Perhaps the best way to see the entire structure of an MSI file is with the Orca tool in the Platform SDK (install from Orca.msi). Once installed, you can right-click an MSI file and you'll get an Edit with Orca choice. Figure 1 shows you what the ServiceInstall table looks like after being updated. The heading names are truncated to show the full width of the table, but you can see the column values in the right side pane for the ServiceInstall table.
Similarly, Figure 2 shows the updated ServiceControl table. Figure 3 shows the File table, where the FileName column contains the name of the Service executable (both short and log names are in this column). This is the table that the tool queries (as described previously) to get the value of Component_ , shown here in the Component column.
Summary

I've described the way that MSI installs Services using the ServiceInstall and ServiceControl tables and provided a tool that you can use to process an MSI file to add entries to those tables based on the content of an Xml file. Although this tool creates MSI table entries for ServiceInstall and ServiceControl, there's enough infrastructure in the tool for you to extend it for other uses. For example, Visual Studio setup projects don't have IDE support for installing environment variables. If you're installing these, you're probably writing custom action code in your setup project. However MSI has built-in support for installing environment variables with the Environment table (see http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/environment_table.asp) so rather than writing custom action code to install and uninstall environment variables you could extend this tool to have Windows Installer automatically handle them.
